The computational complexity of the self-attention mechanism in Transformer models significantly limits their ability to generalize over long temporal durations. Memory-augmentation, or the explicit storing of past information in external memory for subsequent predictions, has become a constructive avenue for mitigating this limitation. We argue that memory-augmented Transformers can benefit substantially from considering insights from the memory literature in humans. We detail an approach for integrating evidence from the human memory system through the specification of cross-domain linking hypotheses. We then provide an empirical demonstration to evaluate the use of surprisal as a linking hypothesis, and further identify the limitations of this approach to inform future research.
translated by 谷歌翻译
通过将从地面视图摄像头拍摄到从卫星或飞机上拍摄的架空图像的图像,通过将代理定位在搜索区域内,将代理定位在搜索区域内,将代理定位在搜索区域中。尽管地面图像和架空图像之间的观点差异使得跨视图地理定位具有挑战性,但假设地面代理可以使用全景相机,则取得了重大进展。例如,我们先前的工作(WAG)引入了搜索区域离散化,训练损失和粒子过滤器加权的变化,从而实现了城市规模的全景跨视图地理定位。但是,由于其复杂性和成本,全景相机并未在现有机器人平台中广泛使用。非Panoramic跨视图地理定位更适用于机器人技术,但也更具挑战性。本文介绍了受限的FOV广泛地理定位(Rewag),这是一种跨视图地理定位方法,通过创建姿势吸引的嵌入并提供将粒子姿势纳入暹罗网络,将其概括为与标准的非填充地面摄像机一起使用,以供与标准的非卧型地面摄像机一起使用。 Rewag是一种神经网络和粒子滤波器系统,能够在GPS下的环境中全球定位移动代理,仅具有探测仪和90度FOV摄像机,其本地化精度与使用全景相机实现并提高本地化精度相似的定位精度与基线视觉变压器(VIT)方法相比,100倍。一个视频亮点,该视频亮点在https://youtu.be/u_obqrt8qce上展示了几十公里的测试路径上的收敛。
translated by 谷歌翻译
该手稿解决了预测出院后全因住院再入院或死亡的同时问题,并量化放电放置在防止这些不良事件中的影响。为此,我们开发了一个固有的可解释的多级贝叶斯建模框架,该框架灵感来自重新激活的深神经网络的分段线性。在生存模型中,我们明确调整了混淆,以量化局部平均治疗效果以进行放电的干预措施。从2008年和2011年开始,我们对5%的Medicare受益人样本进行了培训,然后在2012年的索赔中测试了该模型。该模型对30天全因素外的再选中(使用官方CMS方法定义)的分类精度进行了评估,该模型对XGBoost,Logistic回归(功能工程后)和对同一数据进行训练的贝叶斯深神经网络的执行方式相似。该模型对30天的分类任务进行了预测的30天分类任务,该任务是使用剩下的未来数据进行测试,该模型的AUROC约为0.76,AUPRC约为0.50(相对于测试数据中的总体阳性速率),AUPRC的AUPRC达到了约0.76,而AUPRC的AUPRC则达到了AUPRC,则获得了AUPRC。证明人们不需要为准确性而牺牲可解释性。此外,该模型的测试AUROC为0.78,分类为90天全因素外再入院或死亡。我们很容易地凝视着我们固有的可解释模型,总结了其主要发现。此外,我们演示了Black-box Perthoc解释器工具的形状如何生成不受拟合模型支持的解释 - 如果以面值为单位,则没有提供足够的上下文来使模型可操作。
translated by 谷歌翻译
While the brain connectivity network can inform the understanding and diagnosis of developmental dyslexia, its cause-effect relationships have not yet enough been examined. Employing electroencephalography signals and band-limited white noise stimulus at 4.8 Hz (prosodic-syllabic frequency), we measure the phase Granger causalities among channels to identify differences between dyslexic learners and controls, thereby proposing a method to calculate directional connectivity. As causal relationships run in both directions, we explore three scenarios, namely channels' activity as sources, as sinks, and in total. Our proposed method can be used for both classification and exploratory analysis. In all scenarios, we find confirmation of the established right-lateralized Theta sampling network anomaly, in line with the temporal sampling framework's assumption of oscillatory differences in the Theta and Gamma bands. Further, we show that this anomaly primarily occurs in the causal relationships of channels acting as sinks, where it is significantly more pronounced than when only total activity is observed. In the sink scenario, our classifier obtains 0.84 and 0.88 accuracy and 0.87 and 0.93 AUC for the Theta and Gamma bands, respectively.
translated by 谷歌翻译
There are multiple scales of abstraction from which we can describe the same image, depending on whether we are focusing on fine-grained details or a more global attribute of the image. In brain mapping, learning to automatically parse images to build representations of both small-scale features (e.g., the presence of cells or blood vessels) and global properties of an image (e.g., which brain region the image comes from) is a crucial and open challenge. However, most existing datasets and benchmarks for neuroanatomy consider only a single downstream task at a time. To bridge this gap, we introduce a new dataset, annotations, and multiple downstream tasks that provide diverse ways to readout information about brain structure and architecture from the same image. Our multi-task neuroimaging benchmark (MTNeuro) is built on volumetric, micrometer-resolution X-ray microtomography images spanning a large thalamocortical section of mouse brain, encompassing multiple cortical and subcortical regions. We generated a number of different prediction challenges and evaluated several supervised and self-supervised models for brain-region prediction and pixel-level semantic segmentation of microstructures. Our experiments not only highlight the rich heterogeneity of this dataset, but also provide insights into how self-supervised approaches can be used to learn representations that capture multiple attributes of a single image and perform well on a variety of downstream tasks. Datasets, code, and pre-trained baseline models are provided at: https://mtneuro.github.io/ .
translated by 谷歌翻译
The ability to convert reciprocating, i.e., alternating, actuation into rotary motion using linkages is hindered fundamentally by their poor torque transmission capability around kinematic singularity configurations. Here, we harness the elastic potential energy of a linear spring attached to the coupler link of four-bar mechanisms to manipulate force transmission around the kinematic singularities. We developed a theoretical model to explore the parameter space for proper force transmission in slider-crank and rocker-crank four-bar kinematics. Finally, we verified the proposed model and methodology by building and testing a macro-scale prototype of a slider-crank mechanism. We expect this approach to enable the development of small-scale rotary engines and robotic devices with closed kinematic chains dealing with serial kinematic singularities, such as linkages and parallel manipulators.
translated by 谷歌翻译
This paper considers a combination of actuation tendons and measurement strings to achieve accurate shape sensing and direct kinematics of continuum robots. Assuming general string routing, a methodical Lie group formulation for the shape sensing of these robots is presented. The shape kinematics is expressed using arc-length-dependent curvature distributions parameterized by modal functions, and the Magnus expansion for Lie group integration is used to express the shape as a product of exponentials. The tendon and string length kinematic constraints are solved for the modal coefficients and the configuration space and body Jacobian are derived. The noise amplification index for the shape reconstruction problem is defined and used for optimizing the string/tendon routing paths, and a planar simulation study shows the minimal number of strings/tendons needed for accurate shape reconstruction. A torsionally stiff continuum segment is used for experimental evaluation, demonstrating mean (maximal) end-effector absolute position error of less than 2% (5%) of total length. Finally, a simulation study of a torsionally compliant segment demonstrates the approach for general deflections and string routings. We believe that the methods of this paper can benefit the design process, sensing and control of continuum and soft robots.
translated by 谷歌翻译
Image classification with small datasets has been an active research area in the recent past. However, as research in this scope is still in its infancy, two key ingredients are missing for ensuring reliable and truthful progress: a systematic and extensive overview of the state of the art, and a common benchmark to allow for objective comparisons between published methods. This article addresses both issues. First, we systematically organize and connect past studies to consolidate a community that is currently fragmented and scattered. Second, we propose a common benchmark that allows for an objective comparison of approaches. It consists of five datasets spanning various domains (e.g., natural images, medical imagery, satellite data) and data types (RGB, grayscale, multispectral). We use this benchmark to re-evaluate the standard cross-entropy baseline and ten existing methods published between 2017 and 2021 at renowned venues. Surprisingly, we find that thorough hyper-parameter tuning on held-out validation data results in a highly competitive baseline and highlights a stunted growth of performance over the years. Indeed, only a single specialized method dating back to 2019 clearly wins our benchmark and outperforms the baseline classifier.
translated by 谷歌翻译
The availability of frequent and cost-free satellite images is in growing demand in the research world. Such satellite constellations as Landsat 8 and Sentinel-2 provide a massive amount of valuable data daily. However, the discrepancy in the sensors' characteristics of these satellites makes it senseless to use a segmentation model trained on either dataset and applied to another, which is why domain adaptation techniques have recently become an active research area in remote sensing. In this paper, an experiment of domain adaptation through style-transferring is conducted using the HRSemI2I model to narrow the sensor discrepancy between Landsat 8 and Sentinel-2. This paper's main contribution is analyzing the expediency of that approach by comparing the results of segmentation using domain-adapted images with those without adaptation. The HRSemI2I model, adjusted to work with 6-band imagery, shows significant intersection-over-union performance improvement for both mean and per class metrics. A second contribution is providing different schemes of generalization between two label schemes - NALCMS 2015 and CORINE. The first scheme is standardization through higher-level land cover classes, and the second is through harmonization validation in the field.
translated by 谷歌翻译
In this paper, we address the problem of multimodal emotion recognition from multiple physiological signals. We demonstrate that a Transformer-based approach is suitable for this task. In addition, we present how such models may be pretrained in a multimodal scenario to improve emotion recognition performances. We evaluate the benefits of using multimodal inputs and pre-training with our approach on a state-ofthe-art dataset.
translated by 谷歌翻译